TAXONOMIC NOTES ON COLOMBIAN DESMIDS*

P.F.M.COESEL*-

ABSTRACI. - Erom Colombia (South America) cight desmid taxa are newly described : Fuastrum labrys spec, nov., E. paramense spec. nov., Cosmartum mateyncense spec. nov., S. brachatum Ralfs forma parallelium fo. nov., S. ceratophornin Nordst, var, Mu'tiplicarum var. nav., Staurastram diabolo spec, nov.. S. lapponicism (Schmidle) Gränlsh, var. flaccum var. now., and Xanthiditum regulare Nordst, var, novangulere var, nov, Of seven taxa the names are recombined or newly given: Closterium guyanense (Bourr, a Couté) stat. now., Pteurotacninm sceptrum (ROy) W. \& G.S. West var. hexacorthum (Grönbl.) comb. nov., Euastrum guyanense (Théréz.) stat, nov, Cosmarium giganfetm (Theréz.) comb. nov., Staurastrunz foersteri nom. nov, S. latecurpasum (Grönbl.) stat. nov, and S. polytrichum (Perty) Rabenh. var. brasiliense (Grönbl.) comb. now. The name Etiastrum fitikaui Forster is valicated.

RESUME. - Huit nouveaux taxons appartenant à l'ordte des Desmidiales sont decrits de Colombie. Euastrum labrys spec. nov., E. panamense spec. nov., Cosmarium mateyucense spec. nov., S. brachiatum Ralfs forma paraliehem fo. nov, S. ceratophorum Nordst. var. mwitiplicatum vat, now., Staurastrum diabolo spec. nov,, S. kapponicam (Schmidle) Grönbl. var. flactum var. now., and Xanthidium regulare Nordst. var, novangulare var. nov. Pour sep: takons les noms ont fait Y'objet d'une nouvelle combinaison ou bien sont donnés comthe nouveaux : Closteriwm guyanense (Bourr. \& Coute) stat. nov., Pleurotaexium sceptrum (Roy) W. \& G.S. West var, hexaconthsm (Grönbli) comb. nov., Euastrum guyanense (Théréz.\} stat. nov, Cosmarium giganteuin (Théréz.) comb. nov, Staurastrum foersteri nom, nov., S. batecurvatum (Grönbl.) stat. nov.. S. polytrichum (Perty) Rabenh, var. brasithense (Grönbl.) comb. nov. Le nom Exastrum fitthaui Förster cst validé.

KEY WORDS : taxonomy, desmids, green algae, freshwater, Colombia. South America.

[^0]
INTRODUCTION

In the scope of the Dutch Colombian co-operative project Ecoandes (HAMMEN et al., 1983) the author made a collection trip in Colombia in February. March 1985, aiming at the sampling of freshwater algae, especially desmids, from vartous climatic regions and ecological habitats. In total 135 samples were gathored from a fifty different localities ${ }^{1}$. Altogether some 450 desmids taxa could be identified ${ }^{2}$. Since there exist few reports on the desmids of Colombia, and these are limited to the montanc habitat of the Andes (WESI, 1914: TAY1.OR, 1935), most of the taxa found by the present author constitute new records for this country. Preceding \quad general study to the distribution patterns of these taxa (publ. in prep.) it appeared desirable to describe a number of new taxa and to recombine some names.

MATERIAL AND METHODS

The algal material, collected by means of a plankton net (mesh size $40 \mu \mathrm{~m}$) or by squeezing out submersed waterplants, was studied in fixed condition (4% formaldehyde). Electric conductivity (in $\mu 5^{\prime} \mathrm{cm}$ at $25^{\circ} \mathrm{C}$) and pH of the water were measured electrometrically, usually at the same day of sampling.

The desmid taxa discussed in this paper are from one or more of the following localities :
Laguna Verde - mountain lake in the Eastegn Andes, circa 60 km north of Bogotá, at an altitude of 3650 m . Conductivity $10 \mu \mathrm{~S}, \mathrm{pH} 6.1$.
Laguna Seca - pool along the road Zipaquira - San Cayetano near Laguma Verde, partly filled in with dense vegetation of Isoctes spec, and Callitriche nubigena Fass. Conductivity $40 \mu \mathrm{~S}, \mathrm{pH} 5.5$.
Eaguna Agua Blanca - mountain pool at an altitude of 2850 m in the Eastern Andes, circa 2 kmt northeeast of Laguna Guatavita (north of Bogota). The pool is filled in with a dense vegetation of Potamogeton natans L. and Uiricularia obtusa Sw. pH 5.9.
Laguna Mateyuca - tropical lowland lake situated in the savannas of the province of Meta, a good 20 km south-west of Pterto Lopez. Conductivity $11 \mu \mathrm{~S}$. pH 5.5.
Laguna Flor Amarilla - lowland lake circa 7 km east of Lag. Mateyuca. adja cent to Lag. Mozambique. Conductivity $14 \mu \mathrm{~S}, \mathrm{pH} 5.6$.
Laguna Rancho Grande lowland lake in the prowince of Meta, some kilome. ters south of Rancho Bravo. circa 40 kmi east of Puerto Lopez. Iust like Läg.
(1) The collection is stored at the Hugo de Vries laboratorium in Amsterdam while a dipli cate collection is present at the Instituto de Ciencias Naturales, Rogoti, Colombia.
(2) A complete list can be supplied by the author.

Mateyuca and Lag. Flot Amarilla along the borders with luxurious vegetations of submersed wrater plants e.g. Isoctes spec. and Eriocawion spec. Conductivity $7 \mu \mathrm{~S} . \mathrm{pH} 5.4$.
Cienaga de Perancho - watercourse in the National Park Los Katios, situated near the outlet of the Rio Atrato in the north-western part of Colombia, at the Panama border. Along she banks of the watercourse dense vegetations of Pistia stratiotes I; mo submersed water plants. Conductivity $270 \mu \mathrm{~S}, \mathrm{pH} 6.7$.

TAXONOMIC DESCRIPTION AND DISCUSSION

Closterium guyanense (Bourr. \& Coute) stat, nov. (pl. 1, Fig. 2)
Basionym : Glosterium lineatum Ehrenb. var. guywnense Bourr. \& Couté (BOURRFLLY and COUTE, 1982, p. 259, pl. 6, fig. 7i.
It is the opirion of the author that this taxon, described from French Guyana by BOURRELLY and COUTE ($1, c$.), with its small dimensions and wide apart standing striae, has but little to do with Closterium lineatum Ehrenb, and better could be given the status of a separate species.

Closterium guyatense, so far only known from French Guyana (see also THEREZIEN. 1985, p. 61. pl. 11, fig. 7), was encoumtered incidently in sample ut, 90, from Laguna Mateyuca.

Pleurotaenium seeptrum (Roy) W. \& G.S. West var. bexacanthum (Grönbl.) comb. nov. (pl. I, fig. 1)
Basionyrn : Pleurotaenium tridentulum (Wolle) W. West. var, hexacanthum Gönbl. (GRONBLAD, 1945, p. 11. pl. 2. fig. 34).
As is argumented by PRESCOTT et al (1975) the epitheron sceptrum Roy has priority over iridentulum Woile. Consequently H. Croaxdale (in PRESCOTT et al. I. c.) recombined some infraspecific taxa of P. tridentulum known from Nozth America. So far this was not done with var. hexacanthum Grönbl., a taxon in its distribution possibly restricted to South America.
in the Colombian samples P. sceptrum var. hearacanthum appeared very zare. Only in collection res. 89 and 93. from lakes Mateyuca and Flor Amarilla some specimens could be observed.

Euastrum fittkaui Förster ex Coesel (pl. 1, Fig. 6)
Lectotype: Pl, 8, Gig. 10 in FÖRSTER (1969),
Although it is clear that FÖRSTER (1, c. p. 32) meant his fig. 10 as iconotype, being the only onc figute accompanying the original description of Eudstrum fittkaui, he did not mention it explicitly. Since from 1 January 1958 the indication of a nomenclatural type is obliged (Art. 37.1 I.C.B.N.) formally the name of this species was not validly published. By indication of a lectotype now the name in question has been validated.

Of E. fitikaui, so far only known from one locality in Brazil, che present author encountered but a single specimen, in sample nt. 90 (Laguna Mateyuca).

Euastrum guyanense (Théréz) stat. nov. (pl. 1, fig. 7)
Basionym : Euastrum quadrilobum Scott \& Grönbl, var. guyanense Théréz. (THEREZIEN, 1985, p. 157 , pl. 16, fig. 6),
Synonym : Eiuastrum bipartitum Krieg forma, in THÉRÉZIEN, 1985, p. 74, pl. 16, fig. 5.
The alga figured in our plate 1:7 very much resembles E. quadritobw var. guyanense as described by THEREZIEN (1.c.). However, classing this taxon as a variety of E. quadrilobum is not tenable because of the quite deviating shape of the apical notch - one of the most important criteria when differenriating within this genus. While E. quadribobum as described by SCOTT and GRÖNBLAD $(1957, \mathrm{p}, 14, \mathrm{pl}, 3, \mathrm{figs} .810)$ is marked by a sharp mediane incision in the convex apical margin of its polar lobe, var. guyanewse Théréz, shows a polar lobe of which the apical margin is widely retuse, without a mediane incision. Moreover in var. guyanense the polar lobe is almost as broad as the basal part of the semicell as against a relatively much smaller polar labe in the nominal variety of E. quadrilobum. Eailing the description of Euastrum species approaching var. guyanenise in its essential features, this vatiety has to be raised in rank to species level. There is no doubs that E. bipartitum Krieg. forma, as Eiguted by THEREZIEN (h.c.) bolongs to this same species. It is also characterized by a very broad polar lobe with retuse apex, in which characters it is clearly distinct from E. bipartitum as originally described by KRIEGER (1932, p. 211, pl. 20, fig. 16),
E. guyanense was encountered as a rare species in the benthos of Laguna Flor Amarilla (collectot nx. 92).

Euastrum labrys spec. nov. (pl. 1, figs 4, 5)
Cellulae subrectanguhares fronte conspectne rationem longitudinis pro latitudine 1.6 habentes, cum sirn profundo et clauso. Pars basalis rectargularis semiceliularum parte apicale multes mugis lata disiuncta est ab excavatione profunda. Pars basalis semicellulae latera leviter retusa ad hunc modum utrobique lobulis binis mucronaris habet. In summo parte apicale semicelluke excavatio profunda incrassatione notabile parietis exterme vhargimata duos lobos polares granutis coronatos discernens. Sub lobis polaribus duos lobi subpolares perpendiculares binis spinulis magnitudine imparibus cum horizonsaliter tum verticaliter divergentibus moniti. Insuper hae spinulae subpolares tam conspectu apicale quam conspectu laterale asymmetrice dispositae sunt. Regio medialis semicellulae scrobiculo magno ad centrum monita. Longitudo $45-49 \mu \mathrm{~m}$, Latitudo $28-30 \mu \mathrm{~m}$ crassitudo 14-15 $\mu \mathrm{m}$.

Holotypus : tab, 1, fig. 5.
Cells in frontal view subractangular in outline. 1.6 times longer than broad, with i deep, closed sinus. Semicells with orectangular basal part by way of a deep invagination passing into a much broader apical part. Basal part of the semi-
cell body with slightly retuse lateral margins, each modeling two lobules furnisted with a little spine. Apical part of the semicell at its upper margin with a deep mediane notch which is bordered outwardly by a prominert thickening of the wall and separates two polar lobules, each tipped with a whorl of granules. Beneath the polar lobules two squarely outwardly projected subpolar lobules, each furnished with two spines which are of different size and disposed in different planes, both horizontally and vertically. Subpolar spines in lateral and in apical view of the cell asymmetrically disposed. Mid region of the semicell with a large, central scrobicle. Cell length $45-49 \mu \mathrm{~m}$. breadth $28-30 \mu \mathrm{~m}$ thick ness $14-1.5 \mu \mathrm{~m}$. Holotype : pl. 1, fig. 5.

E labrys is a characteristically shaped taxon, named after the form of the abruptly widened cell apices somewhat resembling that of a Kretensian doubleaxe. It was only encountered in Laguna Rancho Grande (rather frequently in sample nr. 101).

Euastrum panamense spec. nov. (pl. 1, fig. 8, pl. II, fig. 1)
Cellulae fronte conspectae htitudive longitudinern fere aequante mediae fortiter constrictae. Sinus clausus vel parum apertus. Semicellulae forma variata trapesiforme ad truncato-pyramidale cum hohis sex atque latitudinem maximams margine superiore loborum bosalium attingentes. Ad centrum tumor lata er planad. verrucis in concentricis circulis dispositis monita est. Proxima isthmo verruca singula dimensione majora sita est. Granula seriatim in lobis disposita sunt. Longitudo $78-85 \mu \mathrm{~m}$, latitudo $72.82 \mu \mathrm{~m}$, crassitudo $38-11 \mu \mathrm{~m}$.

Holorypus : tab. II, fig. 1.
Cells in frontal view almost as broad as long. Sinus deep, closed or slightly opened. Semicells approximately truncate-pyramidal in outline, six-lobed, reaching their maximum breadth at the upper margin of the basal lobes and with a large, flat protrusion in the centre, decorated with concentric circles of large granules. Juse below this protrusion one single supra isthinial tubercie. The lobes of namented with rows of smaller granules. Length $78-85 \mu \mathrm{~m}$, breadth $72-82 \mu \mathrm{~m}$, thickress $38-41 \mu \mathrm{~m}$.

Holotype : pl. II, fig. 1.

This alga was found earlier by G.W. Prescort in Panama but identified as Euastrum vertucosum Ehrenb. (PRESCOTT, 1966, p.28, p1. 4, fig. 41). Indeed, E. verrucosum is characterized as onc of the most variable of all the Euastrum (PRESCOTT et al., 1977). For instance some varieties are known with reduced or cven absent lateral protrusions, as var, dalbisii Laporte (LAPORTE, 1931) and var, reductum Nordst. NORDSTEDT, 1880), in that aspect resembling the form under discussion. This might therefore be listed as E verrucosum var. pandmense. However, in view of the fact that this alga is different from typical E. verrucosum not only by its single protrusion but also by its supra isthmial tubercle, the absence of granules in the region between central procuberance and lobes, and by its characteristically shaped, somewhat «shouldered" hasal lobes, the author prefer to distinguish it at species level.
E. panamense was found by the present author in Clenaga de Perancho, in the north-western part of Colombia, at the Panama border. The sample in which the taxon not infrequently can be encountered icollection nr. 133) was gathered by squeezing toots of Pistia stratiotes.

Cosmarium giganteum (Théréz.) comb, nov. (pl. f1, fig. 2)
Basionym : Staurodesmus lobatus (Bärges.) Bourr, var. giganteum Théréz. (THERESIEN, 1985, p. 164, pl. 35, Eig. 1).
The alga figured in our plate $\mathrm{Il}: 2$ owing to its large dimensions and characteristic shape belongs without any doubt to the same species as rhe alga described by THEREZIEN (1. c.) front French Guyatta under the name Seaurodesmus lobatus var. giganteum. However, this species has norhing to do with Staurodesmus lobatus (syn. : Cosmarium lobatum Bürges.) even nothing at all with the genus Staurodesmus Teiling, on account of the bifurcate processes as shown in our figure. THEREZIEN (1.c.) describes S. lobatus vat giganteum as monospinous it is true, but the corresponding figure shows at the upper left angle of the cell an unmistakable initial to bifurcation. Since THERÉZIEN (1985 , p. 126) records this taxon as "very rare», it is not impossible that the original diagnosis was based on but a few specimens with more or less reduced processes. To which genus this species must be designated is difficule to detide because of the areificial character of the geneta Cosmarium Corda ex Ralfs and Stuurastrum Meyen ex Ralfs between which our species in question seems to be in an intermediate position. The assignment to the genus Cosmarium is rather arbitrary, even if it is supported by a resemblance to Cosmarium securiforme Borge var brasiliense Grönbl. (GRONBLAD, 1945) and to C. subauriculatum (West \& West) var. duplomajor Woodhead \& Tweed as interpreted by COUTE \& ROUSSELIN (1975). These Last mentioned species too are characterized by short bifurcate processes at the angles but otherwise they show is different, much flatter cell shape.

Cosmarium giganterm was found by the present author in Laguna Mateyuca and Laguna Flor Amarilla. situated in the savannas of the province of Mera. Boch lakes harbout an extremely rich desmid flora in which Cosmarium giganteum quantitatively plays only a very modest role. Nevertheless some ten specimens could be studied (from collection nTs. 90 and 91). The dimensions appeared to wary more than stated by THEREZIEN (1. c.), i. e. length from 150 to $200 \mu \mathrm{~m}$ and breadth from 140 to $144 \mu \mathrm{~m}$.

Cosmarium mareyncense spec. nov. (pl. III, fig 1, 2)
Celiulae fronte conspectae longitudine latitudine circiter sesquilongiore mediae fortiter constriciae. Sinus late excavata litterac format V figuram habes. Semicellulae forma mariata subcirculare ad ellipsoidea cum angulis basalibus late rotundatis aique soulptura granulis conicis gregatim turnoribus planis disposiris ornatae. Cellulae a vertice conspectae late ellipsoideae and fere circuliformes. Longitudo 172-205 山m, latitudo $100-130 \mathrm{\mu m}$, crassitudo $92-102 \mu \mathrm{~m}$.

Holotypus : tab. III. fig. 2.

Cells in frontal view about 1.5 times longer than broad, with a deep median constriction. Sinus a wide V-shaped invagination. Semicells subcircular-elliptic. with widely rounded basal angles and a sculpture of conical granules forming a group at flat protrusions. Cells in apical view broadly elliptic to almost circular. Length $172-205 \mu \mathrm{~m}$, breadth $100.130 \mu \mathrm{~m}$, thickness $92-102 \mu \mathrm{~m}$.

Holotype : pl. III, fig. 2.
Cosmatium mateyucense is $\|$ very characteristically shaped species, conspicuous by its large dimensions, deep median constriction and marked cell wall ornamented by groups of large, conical gramules. In these characceristics there is a striking resemblance with Euastrum gayazense Först., described from the State of Guyaz, in Brazil (FÖRSTER, 1954, p. 356, pl. 17, fig. 1, 2), However in its outlinc our species does not show any Eudstrum- like invaginacions and apart from that it has a much lower breadth-thickness ratio than E. goyazense (i. e. circa 1.1 versus 1.8).
C. mateyucense was rather frequently encountered in collection n8, 90, a benthic sample from Laguna Mateyuca, with more than 200 desmid taxa being the richest habieat sampled during the author's collection trip.

Staurastrum brachiatum Ralfs forma parallelum fo. nov. (pl. III, figs 5, 6)
Processibus parallelibus ad convergentibus a forma nominata differt. Longitudo $16.18 \mu \mathrm{~m}$, latitudo $36-44 \mu \mathrm{~m}$. Holotypus : tabs, JII, fig. 5 .

Differing from the cype by parallel to converging processes. Cell length $16.18 \mu \mathrm{~m}$, breadth $36-44 \mu \mathrm{~m}$.

Holotype : Pl. III, Eig 5.
Though S. brachiatum is known as a very variabie species morphologically (PRESCOTT et al., 1982) so far the position of the arm-like processes, known as diverging, seemed a constant chatacter. The parallel to even somewhat converging processes as demonstrated in our maserial render the alga quite another hahitus and also because no transitions were observed to cells of S. brachiatum knormallyn shaped in this respect, \#taxonomic separation at the level of forma seems to be justified.
S. brachiatum forma parallelum was met rather frequently in Laguna Verde (Eastern Andes), especially in the plankton of the open water (sample nr. 39),

Staurastrum ceratophorum Nordst. vaz. mult iplicatum var. nov. (pl. III, fig 3)
A varietate nominata spinis temis omne anguio semicellulae impositis, alternowibus cum tribus spimis vertice semicellalarum positis differt. Langitudo cum spinis 109-115 $\mu \mathrm{m}$, sine spinis $76-8.2 \mu \mathrm{~m}_{\text {, }}$ latitudo cum spinis $83-94 \mu \mathrm{~m}$, sine spinis $52.55 \mu \mathrm{~m}$.

Holotypus : tub. III fig. 3.
Differing from the type by the presence of three spines at each angle of the semicell. In addition, Eurnished at the apiees with threc spines, alternating with the patterns of three spines at the angles. Cell length with spines $109-115 \mu \mathrm{~m}$,
(without spines $76-82 \mu \mathrm{~m}$), cell breadth with spincs $83-94 \mu \mathrm{~m}$ (without spines $52.55 \mu \mathrm{~m}$).

Holotype: PI. III, fig. 3.
The original diagnosis of 5 . ceratophorum by NORDS'TEDT 1 1877, p. 24, textfig. 3) indicates but three spines (one at each angle) per semicell, BORGE (1925, p. 38, pl. 4, (ig. 13) described var, duplicatum characterized by an addi tional apical whorl of three spines. On the analogy of it var. multiplicatum is described, resembling var. S. duplicatum in its apical what of three spines but differing from it by the presence of three spines at each angle. Since the median anc of the three spines at the angles is slightly superimposed with respect to the lateral ones, one can distinguish in fact three whorls of spines per semicell. The potential developinent of several parallel whorls of spines in S. ceratophorwm makes clear that FÖRSTER (1969 , p. 65) was not right in transfetring the specific epithecon from Stawrasirum Meyen ex Ralfs to Stautodesmus Teiling.
S. ceratophontim var. multiplicatum was. just like var. duplicatum only mes in Laguna Mateyuca (not rare in sample nr. 89).

Staurastrum diabolo spec. nov. (pl. I, fig. 3)
Cellulae fronte conspectae longitudise latitudinem fere aequante medine fortiter constrictae. Sinus late excavata litterae formae V figuram habet. Semicellulae subellipsoidecte processibus subapicalibus brevibus hate truncatis, singulis coronatis dentibus obtusis. Cellake a vertice conspectae circulares novem processibus brevibus instructae. Lomyitudo $46 \mu \mathrm{~m}$, lavitudo $49 \mu \mathrm{~m}$.

Holotypurs : 1 ab. I, fig. 3.
Cells in frontal view almost as long as broad, with a deep median constriction. Sinus a broad V-shaped invagination. Semicells sub-elliptical with a subapical series of short, broadiy truncate processes, each tipped with a whorl of blunt teeth. Cells in apical view circular with nine short processes borded by blunt teeth. Langth $46 \mu \mathrm{~m}$, breadth $49 \mu \mathrm{~m}$.

Holotype : pl. I, fig. 3.
Unfortunately, only a single specimen of S. diabolo was found (in sample nr. 90, from Laguna Mateyuca). Moreover the cell wall sculpturing could not be studied in greater detail because of the masking protoplasmic contents. In general the description of a new taxon on the basis of but a single specimen has to be dissuaded owing to the possibility of an aberrant form and because anyhow no indication about its morphological variability can be obtained. However in this special case it concerns such a characteristic, regularly shaped form. not at all resembling any known figure from desmid literature, that the above mentioned objections are outweighed.

Staurastrum foersteri nom, nov, (pl. III, fig. 4)
Synonym : Staurastrum teliferum Ralfs var. lagoense (Wille) Goönbl, in GRÖNBLAD. 1945. p. 37, pl. 14, fig. 292; Stcurastrum teliferwm Ralfs var. groenbladii Först. (FORSTER, 1964, p. 429, p1. 28, fig. 7).

The taxon figured by GRONBLAD (1. c.) under the name Staurastrum teliferum var, lagoense was quite rightly renamed by FORSTER (I. c.). For this tason, in frontal view characterized by some marked horizontal series of spines. needs to be separated from S. teliferum forma lagoense described by WILLE [1884, p. 19, pl. 1, fig. 38) in a poor and meaningless way. However present author is of opinion that the taxon in question is not clearly telated to S. teliferum Ralfs at all. For the last mentioned species is characterived by an ornamentation of spines concentrated in more or less concentric circles at the angles of the semicell (RALFS, 1848, p. 128, pl. 22, fig. 4) white the taxon figured by GRONBLAD (1. c.) the spines are not concentrated at the angles bue distributed very regulatly in three parallel series around the semicell. It seems justified to change S. teliferum var, groenbladir in rank and give it the status of a separate species. At species level the epitheton groenbladii cannot be used becruse SKUJA (1931, p. 17) described already another species under this name. That is why the taxon had to be renamed for the second time.

Stawastrum foersteri, up to now only known from South America, was frequencly met in all samples from the tropical clear water lakes Mateyuca, Flor Amarilla, and Rancho Grande. in the province of Meta.

Staunastrum lapponicum (Schmidle) Grönbl. var. flaccum vit. nov. (pl. IV, figs 4, 5)
Semicellulae a semicelliwhis varietatis nominatae angulis basalibus truncatis et leviter deorsum curvatis differumt. Longitudo $37-44 \mu m$, latitudo $37-46 \mu \mathrm{rm}$.

Holotypus: tab. IV, fig, 4.
Serricells differing from those of the type by eruncate, slightly down-turned basal angles. Cell length $3744 \mu \mathrm{~m}$, breadrh $37-46 \mu \mathrm{~m}$.

Holotype: P1, IV, fig. 4.
S. lapponicum var. flacoum occurred fairly abundantly in sample nr. 34 originating from Laguna. Seca in the Eastern Anden.

Staurastrum latecurvatum (Grönbl.) stat. nov. (pi. IV, fige 6, 7)
Basionym I Staurastrurn lepidum Borge var. Latecurvatum Grönbl. (GRÖNBLAD, 1945, p. 26, pl, 10. fig. 217).
One of the main characters of S. lepidum var. latecurvatum as figured by GRÖNBLAD (1. c.) concerns the shape of the semicell body, which is more or less rectangular, distinctly broader than long. In this character, unfortunately nor included in GRÖNBLAD's (1. c.) original diagnosis, var. latecurvatum deviates so clearly from S. lepidum as described by BORGE (1899 , p. 30, pl. 2, fig. 45) that placing under this species does not seem to be justified. Besides, the illustration of S. lepidum in BORGE (1. c.), only ona single semicell being figured, is rather poor and it is notable that there are ne later mentions of the nominal variety of this species as against several recorts of var. Litecurvatum (c. g. FORSTER, 1969: SCOTT et al., 1965).

The original figure of S . latecurvatum in GRONBLAD (1. c.) is more or less
intermediate to our figures 6 and 7. Accordingly, describing these different forms as separate infraspecific taxa does not seem advisable for the moment.
S. Latecurvatum as illustrated in our fig. 6 was met rather frequently in the tropical lowland lakes Mateyuca and Flor Amarilla (especially in samples nts. 89 and 90). The form illustrated in our fig. 7 appeared to be abondant in Laguna Agua Blanca, in the Eastern Andes (sample ars 22 and 23).

Staurastrum polytricbum (Perty) Rabenh. var. brasiliense (Grönbl.) cortb. nov. (pl. IV, fig. 3)
Basionym : Staurastrum brebissonii Arch, var. brasiliense Grönbl. (GROXNBLAD. 1945. p. 24. pl. 9. fig. 198).
In shape and dimensions of cell body and spines and also in number and denxity of spine insertion Grönblad's taxot agrees much more with the diagnosis of Staurasitum polytrichum (as Phycastum polytrichum) by PERTY (1852. p. 210. pl. 16. fig. 24\} than that of Staurastrum brebissonii by ARCHER 1861. g. 739). As a marter of fact last mentioned diagnosis is rather concise and not accompanied by any illustration, giving rise to different conceptions of this species (see flora of WEST. WEST \& CARTER, 1923, p. 62). Possibly the description of vat brasiliense by GRONBLAD (i.c.) was misdirected by that well known flora in which unfortunately the fgures of S. polytrichum may be labeled as confusing (MESSIKOMMER $1935, \mathrm{p}, 124$).
S. polytrichum var brasiliense appeared not ancommon in the samples of Laguna Mateyuca (especially in collection ne. 89) and Laguna Flor Amarilla (especially nar. 91). Less frequenciy it was met in Laguna Rancito Grande (n. 101).

Xanibidium regulare Nordst. var novangulare vat, nov. (pl. IV, figs 1, 2)
Semicelhalue a semiceltularis varietatis nominatae differnant corona apicale ex sex spinis consistente necnon corona mediule ex novem spinis consistente ut a vertice conspectae novanghares sint. Longitudo cum spinis : $10-750 \mu \mathrm{~m}$, latiludo crassitudo aequalis $103-115 \mathrm{\mu m}$.

Holotypus : tub. JV. fig. 2.
Semicells differing from the typical by having an apical whorl of six spines, a mediane whorl of nime spines, and by being nine-angular in apical view. Cell length (inclusive of spines) $110-150 \mu \mathrm{~m}$; cell breadith $=$ cell thickness; $103.1 .15 \mu \mathrm{~m}$.

Holotype: RI. [V, fig. 2.
While Xanthidium regulare as originally diagnosten by NORDSTEDT (1869. p. 231, with textfig.) in apical view is octangulat, the later described var. asteptum Nordst. in Borge as well as a number of other taxa thought to be synorymous with that BICUDO and CARVALHO, 2969) are six-angular in top view. The apical view of the above described var, novangulare is in its rough outline almost circular so that ir seems to contern rather a representative of the genus Staurastrum Meyen ex Ralfs than of Xunthidium Ehrenb. ex Ralfs. Nevertheless its relationship with X. regulare, owing to the overall agreement in habitus, is obvious.

The cell angles of X. regulure vaf, novangulure may be furnished with single stout spines or with furcate ones. Since it is a well known fact that the shape of spines in Sturrastrum and Xanthidrum specics often concerns apolymorphic characteristic which can be influcnced by the environment, better no taxonomic implications will be attended (see also FORSTER, 1974, p. 164, concerning the differences between X. regulare var. astepium and X. regulare var. pseudoregulare (Borge) Bicudo \& Carvalho).
X. regulare vat. novargutare was met as an infrequently occurring taxon in Laguna Mateyuca (especially in sample nr, 88) where it showed spines of a remarkabiy ochreous colour, just like the spines of other large-shaped desmid taxa as X. regulare var. asteptum, Staurastrum ceratophorum Nordst and Stelsrodesmus cormutus (Wolle) Teiling, occurcing in this locality,

ACINNOWLEDGEMENTS

The cour to Colombia was made possible by m grant of the Netherlands Foundation for the Advancement of Tropical Research (WOTR O). The author is much indebsed on Dr. Orlando Rangel (Untversidad Nacional, Bogotá) for arranging the stay in Colombia, and to John Donato and Santiago Duque for guding at the field crips. Ms. A. Ellis née Adant and Ms B. Hourman nce Van Meverden are thasiked for aiding with the name giving and Latin diagnoses. Prof. G. Prescott for comments on the manuscript.

RETERENCES

ARCHER W. 1861 - Sub-group Desmidieae or Desmidiaceae. In PRITCHARD A. (Ed.). A history of Infusorin including the Desmidaceat and Diatomaceae, British and foreign. Ed. 4, London, Whittaker. pp. 715-751.
BICUDO C.E.M. and CARVALHO L.M., 1969 Polymarphism in the desmid Xarithiditim regulare and its taxonomic implications. J. Phycol. 5(4):369-375.
BORGE O., 1899 - Ueber tropische und subtropische Süsswasser Chiorophyceen. Bith. Kongl. Stenska Verensk. Akad. Handl., Afd. I11, 24 (2) : 1-33.
BORGE O. 1925 - Die von Dr. F.C. Hochne während der Expedition Roosevelt - Rondon gesammelten S isswa sseralgen. Atk. Bot. 19 (17) : 1-56.
BOURRELLY P. ct COUTE A., 1982 - Queloques algues d'eau douce de la Guyane française. Amazoniana 7 (3): 221292.
COUTE A. et ROUSSELIN G. 1975 . Contribution a l'ćtude des algues d'eau douce du Moyen Niger (Mali). Bull. Mus. Hist. Nat. (Paris), Ser. 2, 277:73-175.
FÓSSTER K., 1954 - Desmidiaceen aus Brasilien. 2. Teil : Bahia, Piauhy und Nord-Brasi. isen. Hydrobiologia 23 (3/4) : 321-505.
FÖRSTER K., 1969 - Amazonische Desmidieen 1. Teil : Areai Santaxcim. Amazoniand 2 (1/2) : 5-116.
FORSTER K, 1974 - Amazanische Desmidicen. 2. Teil : Areal Maués-Abacasis. Amazo. niana 5 (2) $=135-242$.

GRONBLAD R, 1945 - De algis brasiliensibus, praecipue Desmidiaceis, in regione fuminis Amazonas a professore August Ginzberger (Wient amo MCMXXVII collectis, Acta Soe Sci. Fenm, Nov ser A. $2(6)=1-43$.
HAMMEN I., Van der, PEREZ PRECIADO A. and PINTO P. (Eds.), 1983 - La Cordillera Central Colombiana, Transecto Parque Los Nevados (Introduccion y datos inicialesi'. Studies on tropical Andean ecasystems. Vol. 1. Vaduz, Cramer, 345 p.
KRJEGER W., 1932 - Die Desmidiaceen der Deutschen Limnologischen Sunda-Expedition. Areh, Hydrobiol. Suppl. 11 : 129.230.
LAPORTE L.J., 1931 - Recherches sut ia biologie et systématique des Destridiées. Encycl, Siol. 9 : 1-147.
MESS[KOMMER E., 1935 - Algen aus dem Obertoggenburg. Mitt. Bot. Mus. Univ, Zürich $148: 95.130$.
NORDSTEDT C.E.O., 1869 - Desmidacede. In WARMING E. Symbolas ad floram Brasiliae centralis cognoscendam 5 : Farn 18. Vidensk. Meddel. Dansh Naturhist. Foren. Kjobenhava 1869 (1415) : 195.234.
NORDSTEDT C.F.O., 1877 - Nornutae algae qquap dulcis hrasiliensis. Ofuets. Förh. Kongl. Svenska Vezensk. Akad, 1877 (3) 115-28.
NORDSTEDT C.F.O., 1980 - De Algis ef Characeis, 1 : De Algis nommulis, praccipue Desmidieis, inter Utricularias Musei Lugduno-Batavi. Acta Unitv. Lund. 16: 1-20.
PERTY M.. 1852 - Zutr Kenntnis kienster Lebensfommen nach Bath, Eunkrionert, Systematik, mit Specialverzeichnis der in der Schweiz beobachreten, Bern, VI +228 p.
PRESCOTT G.W. 1966 - Algae of the Panama Canal and its tributaries - II. Comjugales. Phykos $5(1 / 2)$: 1.49
PRESCOTT G.W., CROASDALE H.T. and VINYARD W.C., 1975 - A synopsis of North Americash Desmids, part II, sect, 1. Lincoln, Univ. Nebtaska Press, 1 vol., 275 p.
PRESCOTT G.W., CROASDAIE H.T and VINYARD W.C., 1977 - A synopsis of North A merican Desmids, part II, sect. 2. Lincoln, Univ. Nebraska Press, 1 vol., 413 p.
PRESCOTT G.W., BICUDO C.E.M. and VINYARD W.C., 1982 - A Symopsis of North A merican Desmids, part II. sect. 4. Lincoln. Uriv. Nebrask क Ptess, 1 vol., 700 p.
RALFS J., 1848 - The British Desmidiede. London, Reeve, XXII +226 p.
SCOTT A.M. GRÖNBL.AD R. and CROASDALE H., 1965 - Desmids from the Amazot Basin, Brazil, collecred by Dr. H. Sisli. Acta Bot. Femr. 59 : 1.94.
SKUJA H., 1931 - Die Algflora der Insel Moritzholm im Usmaitensee \{Usmas ezers\}. Arth Naturf, Vereims Riga. N.F. 19 (2):120.
TAYLOR W.R., 1935 - Alpine algae from the Santa Marta Mountains, Colombia. Am. I. Bor. 22 (9): 763781.
THEREZIEN Y., 1985 - Contribution à l'étuce des algues d'eau douce de la Guyane Française, à l'exclusion des diatomées. Bibliotheca Phycologicas Bd 72. Vaduz, Cramer, 275 p.
WEST G.S. 1914 - A contribution to our knowledge of the freshwater algac of Colombia. In FUHRMANN O. as MEYER E., Voyage d'exploration scientifique en Colombie. Mém. Soc. Sci, Nat. Neuchatet $3: 10131051$.
WEST W., WEST G.S. and CARTER N. 1923 A Monugraph of the British Desmidiaceas. Vol 5 London, Ray Society, $\mathrm{XXI} \div 300 \mathrm{p}$.
WILLE N., 1884 - Bidrag till Sydamerikas Algflora Ifll, Bia, Komgh. Stenska Vetensk. Akud. Handl. 8 (18) : 1-64.

7

5

2

a \qquad

थ \qquad

C
Plate I - Fig. 1 : Plewrotasnium sceptram (Roy) W. \& G.S. Wicst var. hexacanthum (Grönbl.) comb. nov. Fig. 2 : Closteriath guyarense (Bourt. \& Couté) stat, nov. Eig. 3 : Staurastrum diabolo spec. nov, both frontal and apical view. Figs 4, 5: Fitastrum labrys spec. nov. fig. 5 both frontal, lateral and apical view). Fig. 5. Fivastrum fitikaui Forstet ex Coesel; both frontal, fateral and apical wew. Fig 7 : Eucstrum guyanense (Theréz.) stat, tov.i both frontal, lateral and apical view. Fis 8 . Enustrut punamanse spec. nov.
Scale bar represencs 50 phri scale a : figs 1,$2 ; 5$ cale b ifigs $3,4,5,6,8 ;$ scale of fig. 7.

Plate 11 - Fig, 1 : Litsastrun panamense spec, nov; both frontal, lateral and apical view; cell wall punctuation only indicated in frontal view. Fig. 2 : Costharinmgigantewm Théréz.) comb. How; borh frontal, lateral and apical view; wall punctuation only indicated in apical view.
Scale bat tagresents 50 山rr: scale m: fig. 2; scale b : flg. 1.
\qquad

Plate III - Fig. 1, 2 . Cosmarium mateyucense spec. nov. (fig. 2 both frontal, lateral and apical view: cel, wall punctation only indicated in apical view $\}$. Fig. 3 : Stautastrusm ceratopho rums Nofdst, var. multiplicatism var, now.; both frontal and apical wew, wall punctuation only indicated in apical view. Fig. 4 : Statarastrum foersteri nom. noy. Figs 5, 6 : 5 taurastrum brachiatum: Ralfs forma parailelum fo. nov. (figg, 6 horh lateral and apical view). Scale tar represents $50 \mu \mathrm{~m}$; scale a : figs $1,2,3$, scale b : figs 4, 5, 6 .

a \qquad
b \qquad

Plate IV - Fig. 1. 2 : Xanthidiums regulate Nordst, var, novangulare var, nov, $;$ both frontal and apical view. Fig. 3 : Staurastrum polytrichum (Perry) Rabenh. var Erasitiense (Grönbl.) comb nav. Figs 4, 5 : Stourastrım lapponicum (Schmidle) Grönbl, var. fltfum var nov. (fig. 4 both frontal and apical view). Fig. 6. 7 : Staurastrum latecurvatrum (Grörbl.) stat nov-
Scale bar represent $50 \mathrm{\mu m}$; scale a : figs 1, 2; scale b: figs 3-7.

[^0]: Studics on Colombian Cryptogams - XXVII.
 ** Hago de Vries Laboratotium, Untversiteit van Amsterdam, Kruislaan 318, NL-1098 SM Amsterdam, The Netherlands.

